# What is radiometric dating and how does it work

As a member, you'll also get unlimited access to over 75, lessons in math, English, science, history, and more.

Plus, get practice tests, quizzes, and personalized coaching to help you succeed. Login here for access. Log in or sign up to add this lesson to a Custom Course. Login or Sign up. Gillaspy has taught health science at University of Phoenix and Ashford University and has a degree from Palmer College of Chiropractic. The aging process in human beings is easy to see.

As we age, our hair turns gray, our skin wrinkles and our gait slows. However, rocks and other objects in nature do not give off such obvious clues about how long they have been around. So, we rely on radiometric dating to calculate their ages. Radiometric dating, or radioactive dating as it is sometimes called, is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes.

Different methods of radiometric dating can be used to estimate the age of a variety of natural and even man-made materials. The methods work because radioactive elements are unstable, and they are always trying to move to a more stable state. So, they do this by giving off radiation. This process by which an unstable atomic nucleus loses energy by releasing radiation is called radioactive decay.

The thing that makes this decay process so valuable for determining the age of an object is that each radioactive isotope decays at its own fixed rate, which is expressed in terms of its half-life. So, if you know the radioactive isotope found in a substance and the isotope's half-life, you can calculate the age of the substance.

So, what exactly is this thing called a half-life?

Well, a simple explanation is that it is the time required for a quantity to fall to half of its starting value. So, you might say that the 'full-life' of a radioactive isotope ends when it has given off all of its radiation and reaches a point of being non-radioactive.

When the isotope is halfway to that point, it has reached its half-life. There are different methods of radiometric dating that will vary due to the type of material that is being dated. For example, uranium-lead dating can be used to find the age of a uranium-containing mineral. It works because we know the fixed radioactive decay rates of uranium, which decays to lead, and for uranium, which decays to lead So, we start out with two isotopes of uranium that are unstable and radioactive.

They release radiation until they eventually become stable isotopes of lead. These two uranium isotopes decay at different rates. In other words, they have different half-lives. The half-life of the uranium to lead is 4. The uranium to lead decay series is marked by a half-life of million years. These differing rates of decay help make uranium-lead dating one of the most reliable methods of radiometric dating because they provide two different decay clocks.

This provides a built-in cross-check to more What is radiometric dating and how does it work determine the age of the sample. Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the What is radiometric dating and how does it work of different isotopes.

For example, with potassium-argon datingwe can tell the age of materials that contain potassium because we know that potassium decays into argon with a half-life of 1. With rubidium-strontium datingwe see that rubidium decays into strontium with a half-life of 50 billion years. By anyone's standards, 50 billion years is a long time.